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Abstract

An L(2, 1)-coloring (or labeling) of a graph G is a vertex coloring f :
V (G) → Z+ ∪ {0} such that |f(u) − f(v)| ≥ 2 for all edges uv of G, and
|f(u)−f(v)| ≥ 1 if d(u, v) = 2, where d(u, v) is the distance between vertices
u and v inG. The span of an L(2, 1)-coloring is the maximum color (or label)
assigned by it. The span of a graph G is the smallest integer λ such that
there exists an L(2, 1)-coloring of G with span λ. An L(2, 1)-coloring of a
graph with span equal to the span of the graph is called a span coloring.
For an L(2, 1)-coloring f of a graph G with span k, an integer h is a hole

in f if h ∈ (0, k) and there is no vertex v in G such that f(v) = h. A
no-hole coloring is an L(2, 1)-coloring with no hole in it. An L(2, 1)-coloring
is irreducible if color of none of the vertices in the graph can be decreased to
yield another L(2, 1)-coloring of the same graph. A graph G is inh-colorable
if there exists an irreducible no-hole coloring of G. Most of the results
obtained in this paper are answers to some problems asked by Laskar et al.
[5]. These problems are mainly about relationship between the span and
maximum no-hole span of a graph, lower inh-span and upper inh-span of a
graph, and the maximum number of holes and minimum number of holes in
a span coloring of a graph. We also give some sufficient conditions for a tree
and an unicyclic graph to have inh-span ∆ + 1.
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