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Abstract

In their paper, Bounds on the number of edges in hypertrees, G.Y. Katona
and P.G.N. Szabó introduced a new, natural definition of hypertrees in k-
uniform hypergraphs and gave lower and upper bounds on the number of
edges. They also defined edge-minimal, edge-maximal and l-hypertrees and
proved an upper bound on the edge number of l-hypertrees.

In the present paper, we verify the asymptotic sharpness of the
(
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)

upper bound on the number of edges of k-uniform hypertrees given in the
above mentioned paper. We also make an improvement on the upper bound
of the edge number of 2-hypertrees and give a general extension construction
with its consequences.

We give lower and upper bounds on the maximal number of edges of k-
uniform edge-minimal hypertrees and a lower bound on the number of edges
of k-uniform edge-maximal hypertrees. In the former case, the sharp upper
bound is conjectured to be asymptotically 1
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