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Abstract

Let G be a graph with no isolated vertex. In this paper, we study a
parameter that is squeezed between arguably the two most important dom-
ination parameters; namely, the domination number, γ(G), and the total
domination number, γt(G). A set S of vertices in a graph G is a semitotal
dominating set of G if it is a dominating set of G and every vertex in S is
within distance 2 of another vertex of S. The semitotal domination number,
γt2(G), is the minimum cardinality of a semitotal dominating set of G. We
observe that γ(G) ≤ γt2(G) ≤ γt(G). We characterize the set of vertices
that are contained in all, or in no minimum semitotal dominating set of a
tree.
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Appendix

We now present an example to illustrate Theorem ??. Applying our pruning process
discussed in Section ?? to the rooted tree T with root v illustrated in Figure 1(a), we
proceed as follows.

• The branch vertices b3 and b4 are both at maximum distance 3 from v in T . We
select b3, where |L

3(b3)| = 1. Thus, b3 is a type-(T.1) branch vertex and we delete D(b3)
and attach a path of length 3 to b3.

• The branch vertex at maximum distance from v in the resulting tree (illustrated in
Figure 1(b)) is the vertex b4. Since |L1(b4)| > 2 and every leaf-descendant of b4 belongs
to L1(b4), the vertex b4 is therefore a type-(T.3) branch vertex and we delete D(b4) and
attach a path of length 1 to b4.

• The branch vertex at maximum distance from v in the resulting tree (illustrated
in Figure 1(c)) is the vertex b2. Since |L4(b2)| = 1 and L1(b2) = L3(b2) = ∅, the vertex
b2 is a type-(T.4) branch vertex and we delete D(b2) and attach a path of length 4 to b2.

• The branch vertex at maximum distance from v in the resulting tree (illustrated
in Figure 1(d)) is the vertex b1. Since |L3(b1)| = 1, the vertex b1 is a type-(T.1) branch
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Figure 1.The pruning of a tree rooted at v.

vertex and we delete D(b1) and attach a path of length 3 to b1. The resulting pruned
tree T v is illustrated in Figure 1(e).

• Since |L
1

(v)| = 1 and |L
4

(v)| = 1, by Theorem ??, we deduce that v /∈ At2(T ) ∪
Nt2(T ).
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