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Abstract

In this paper, we show that Qk
n
is a divisor graph, for n = 2, 3. For n ≥ 4,

we show that Qk
n
is a divisor graph iff k ≥ n− 1. For folded-hypercube, we

get FQn is a divisor graph when n is odd. But, if n ≥ 4 is even integer,
then FQn is not a divisor graph. For n ≥ 5, we show that (FQn)

k is not a
divisor graph, where 2 ≤ k ≤ ⌈n

2
⌉ − 1.
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1. Introduction

A graph G is called a divisor graph if there is a bijection f : V (G) → S, for some
finite nonempty set S of the positive integers, such that uv ∈ E(G) if and only
if gcd(f(u), f(v)) = min{f(u), f(v)} (this means uv ∈ E(G) iff f(u) | f(v) or
f(v) | f(u)). The function f is called a divisor labeling of G.
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Moreover, for a finite nonempty set S of the positive integers, the divisor
graph G(S) of S has S as its vertex set and two distinct vertices i and j are
adjacent if i | j or j | i. A graph G is a divisor graph if G is isomorphic to G(S).
While the divisor digraph D(S) of S has a vertex set S and (i, j) is an arc of
D(S) iff i divides j. In a digraph D, a transmitter is a vertex having indegree 0, a
receiver is a vertex having outdegree 0, while a vertex v is a transitive vertex if it
has both positive outdegree and positive indegree, and (u,w) ∈ E(D) whenever
(u, v) ∈ E(D) and (v, w) ∈ E(D). An orientation D of a graph G in which every
vertex is a transmitter, a receiver, or a transitive vertex is called a divisor orien-
tation of G.

The length g(n) of a longest path in the divisor graph whose divisor labeling
has range {1, 2, . . . , n} was studied in [8], [12], and [13]. The concept of a divisor
graph involving finite nonempty sets of integers rather than positive integers was
introduced in [14]. It was shown in [14] that odd cycles of length greater than
three are not divisor graphs, while even cycles and caterpillars are. Indeed, not
only caterpillars, but also all bipartite graphs are divisor graphs, as shown in [7].
Divisor graphs do not contain induced odd cycles of length greater than three,
but they may contain triangles, see [7]. For instance, complete graphs are divisor
graphs, see [7].

The distance between any two vertices x and y is the length of a shortest
path between them. We denote this distance by dG(x, y). The diameter of a
graph G is equal to sup{dG(x, y) : x, y ∈ V (G)}, denoted by dG or diam(G).
The power graph of G is denoted by Gk, where the vertex set of Gk is V (G) and
two vertices x, y are adjacent iff dG(x, y) ≤ k. A complete characterization of
powers of paths, cycles and caterpillars that are divisor graphs were given in [1],
[2], and [3].

More results on divisor graphs can be found in [4], [5], and [7]. For undefined
notions and terminology, the reader is referred to [6].

2. When a Power Graph of a Hypercube is a Divisor Graph

In this section we characterize which powers of hypercubes are divisor graphs.

Definition. A hypercube Qn is a graph whose vertex set V (Qn) is the set of
n-bit binary strings. (Any vertex of Qn may be labeled as x = x1x2 · · ·xn, where
x1x2 . . . xn is the binary representation of x.) Two vertices x = x1x2 · · ·xn and
y = y1y2 · · · yn are adjacent if they differ in exactly one bit.

Alternatively, a hypercube can be defined recursively by Qn = Qn−1 × K2,
for n ≥ 2 and Q1 = K2. In Figure 1, we have the graphs Q1, Q2, and Q3.

It is well known that the diameter of Qn is n, hence Qn
n is a complete graph.

Moreover, two vertices are adjacent in Qk
n, if they differ in k or less bits of their
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Figure 1. Q1, Q2, and Q3.

binary strings.
The following important characterization of divisor graphs can be found in

[7].

Theorem 1. Let G be a graph. Then G is a divisor graph if and only if G has

a divisor orientation. In particular, every bipartite graph is a divisor graph.

The following easy observation can be found in [7].

Proposition 2. Every induced subgraph of a divisor graph is a divisor graph.

We start with the following result for characterizing which powers of hyper-
cubes are divisor graphs.

Theorem 3. Suppose that Qn is a hypercube. Then Qn−1
n is a divisor graph.

Proof. At first, two vertices in Qn−1
n are adjacent if they differ in n − 1 or less

bits of their binary strings. Then according to the labeling of vertices in Qn, each
vertex of Qn−1

n is adjacent to every other vertex of Qn−1
n except its complement in

labeling. Hence, we can partition the vertices in Qn into { ai : 1 ≤ i ≤ 2n−1, i ∈
N} ∪ { bi : 1 ≤ i ≤ 2n−1, i ∈ N} such that, for each i, ai is the complement of
bi. Now, a divisor labeling f of Qn−1

n is defined as follows:

{
f(ai) = piqi−1 for 1 ≤ i ≤ 2n−1, i ∈ N,
f(bi) = pi−1qi for 1 ≤ i ≤ 2n−1, i ∈ N,

where p and q are distinct primes. Hence, Qn−1
n is a divisor graph.

Remark 4. This is an example of a graph for which both it and its complement

graph (Qn−1
n being bipartite) are divisor graphs.

Note that Qn is a bipartite graph and hence a divisor graph. So, when n = 2
or 3, Qk

n is a divisor graph for any positive integer k. Now, we look at n ≥ 4.

Lemma 5. Q2
4 is not a divisor graph.

Proof. The induced subgraph on {0001, 0010, 0110, 1111, 1101} in Q2
4 is iso-

morphic to C5. Hence, Q
2
4 is not a divisor graph by Proposition 2.
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We use Theorem 3 and Lemma 5 to get the following corollary.

Corollary 6. Qk
4 is not a divisor graph if and only if k = 2.

Lemma 7. Q3
5 is not a divisor graph.

Proof. The induced subgraph on {00001, 10000, 10110, 11111, 01011} in Q3
5 is

isomorphic to C5. Hence, Q
3
5 is not a divisor graph by Proposition 2.

By Theorem 3, Lemma 5, Proposition 2, and Lemma 7, we get the following
corollary.

Corollary 8. Qk
5 is not a divisor graph if and only if k = 2 or 3.

For any positive integer n greater than three, we have the following lemma.

Lemma 9. For n ≥ 4, Q
(n−2)
n is not a divisor graph.

Proof. The result follows from Lemmas 5 and 7 when n = 4 and 5. For n ≥ 6,
we look at the induced subgraph, say G1, on S = {a1, a2, a3, a4, a5, a6} in

Q
(n−2)
n , where the ai′s are:

a1 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00
︸ ︷︷ ︸

n

,

a2 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00
︸ ︷︷ ︸

n−2

11,

a3 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
︸ ︷︷ ︸

n−3

101,

a4 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
︸ ︷︷ ︸

n−3

000,

a5 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
︸ ︷︷ ︸

n−3

011,

a6 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
︸ ︷︷ ︸

n−2

01.

The graph G1 is represented in Figure 2. Assume to the contrary that G1 is a
divisor graph. Hence, it has a divisor orientation, say D. Suppose that (a1, a2) ∈
E(D). Since a1a5 /∈ E(G1), we must have (a5, a2) ∈ E(D). We get (a3, a2) ∈
E(D), because a3a5 /∈ E(G1). We must have (a1, a4), (a3, a6) ∈ E(D), because
a4a2, a6a2 /∈ E(G1).

Now, assume that (a4, a6) ∈ E(D), and since (a1, a4) ∈ E(D), we get
(a1, a6) ∈ E(D), which is a contradiction, since a1a6 /∈ E(G1). Otherwise,
if (a6, a4) ∈ E(D), and since (a3, a6) ∈ E(D), then we get (a3, a4) ∈ E(D).
This leads to a contradiction, since a4a3 /∈ E(G1). Similarly, we argue the case
(a2, a1) ∈ E(D).
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Figure 2. G1.

Theorem 10. If n ≥ 5 and 2 ≤ k ≤ n− 3, then Qk
n is not a divisor graph.

Proof. For any positive integer k with 2 ≤ k ≤ n − 3, we have the following
nested induced subgraphs: Qk

n ⊇ · · · ⊇ Qk
k+3 ⊇ Qk

k+2. But, Q
k
k+2 is not a divisor

graph, by previous lemma. Hence, Qk
n is not a divisor graph, by Proposition 2.

Using the previous theorem, Lemma 9, and Theorem 3, we get the following
corollary.

Corollary 11. Suppose n ≥ 4 and k ≥ 2. Then Qk
n is a divisor graph if and only

if k ≥ n− 1.

3. Characterizing when Powers of Folded-Hypercubes Are

Divisor Graphs

In this section we characterize when powers of folded-hypercubes are divisor
graphs. First we give the definition of the folded-hypercube.

Definition. A folded-hypercube, denoted by FQn is a graph whose vertex set is
V (Qn) and two vertices x and y are adjacent if dQn

(x, y) = 1 or n, i.e., x and y
differ in exactly one or n bits.

A folded-hypercube is a standard hypercube with some extra edges between
the vertices with complementary binary strings. In addition, if n is odd then
FQn is bipartite, see [9]. Hence, FQn is a divisor graph if n is odd or n = 2.
While for n ≥ 4 is even, we get the following lemma.

Lemma 12. If n is an even integer with n ≥ 4, then FQn is not a divisor graph.

Proof. Consider the set A = {a1, a2, . . . , an+1} in V (FQn), where

a1 = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
︸ ︷︷ ︸

n−1

,

a2 = 00 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
︸ ︷︷ ︸

n−2

,
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a3 = 000 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
︸ ︷︷ ︸

n−3

,

...
an = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

︸ ︷︷ ︸

n

,

an+1 = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
︸ ︷︷ ︸

n−1

.

The induced subgraph on A in FQn is isomorphic to Cn+1, which is an odd cycle.
Hence, FQn is not a divisor graph by Proposition 2.

We denote the complement of x by x̄. According to the definition of folded-
hypercube, we get dFQn

(x, y) = min{dQn
(x, y), dQn

(x, ȳ) + 1} = min{dQn
(x, y),

dQn
(x̄, y)+1}. This gives that (FQn)

⌈n

2
⌉ = K2n , i.e., (FQn)

⌈n

2
⌉ is a divisor graph.

Hence, for n = 2, 3, 4 and k ≥ 2, we get (FQn)
k is a divisor graph. For n ≥ 5,

we get the following results.

Lemma 13. (FQn)
2 is not a divisor graph, for n ≥ 5.

Proof. Consider the induced subgraph on the set S = {a1, a2, a3, a4, a5, a6} in
(FQn)

2, where the ai′s are:

a1 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
︸ ︷︷ ︸

n−5

00000,

a2 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
︸ ︷︷ ︸

n−5

11111,

a3 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
︸ ︷︷ ︸

n−5

11100,

a4 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
︸ ︷︷ ︸

n−5

01110,

a5 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
︸ ︷︷ ︸

n−5

00110,

a6 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
︸ ︷︷ ︸

n−5

11000.

The induced subgraph on the set S in (FQ5)
2 is given in Figure 3. This induced

subgraph is isomorphic to G1 and the result follows by Lemma 9.

For n ≥ 6, the induced subgraph on the set S1 = {a1, a3, a4, a5, a6} in (FQn)
2

is isomorphic to C5. The result follows by Proposition 2.

Lemma 14. (FQn)
3 is not a divisor graph, for n ≥ 7.
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Figure 3. The induced subgraph on S.

Proof. Consider the induced subgraph on the set S = {a1, a2, a3, a4, a5} in
(FQn)

3, where the ai′s are:

a1 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
︸ ︷︷ ︸

n−7

1000001,

a2 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
︸ ︷︷ ︸

n−7

0100001,

a3 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
︸ ︷︷ ︸

n−7

0100010,

a4 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
︸ ︷︷ ︸

n−7

0010010,

a5 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
︸ ︷︷ ︸

n−7

1010000.

For n ≥ 7, the induced subgraph on the set S in (FQn)
3 is isomorphic to C5.

The result follows by Proposition 2.

For k = 4, 5 with n ≥ 2k + 1, we get that (FQn)
k is not a divisor graph.

The proof is similar to that of Lemma 13. For k ≥ 6, we proceed as follows.

Lemma 15. Suppose i = 3 or 4, k = 2i, ni = 4i+ 1, and n ≥ ni. Then (FQn)
k

is not a divisor graph.

Proof. Consider the induced subgraph on the set S = {a1, a2, a3, a4, a5, a6} in
(FQn)

k, where the ai′s are:

a1 = 0 . . . . . . 0
︸ ︷︷ ︸

n−ni

1 0 . . . 00
︸ ︷︷ ︸

i

1 0 . . . 00
︸ ︷︷ ︸

i

1 . . . 11
︸ ︷︷ ︸

i

0 . . . 00
︸ ︷︷ ︸

i−1

,

a2 = 0 . . . . . . 0
︸ ︷︷ ︸

n−ni

1 . . . . . . 1
︸ ︷︷ ︸

i+2

0 . . . . . . 0
︸ ︷︷ ︸

i

1 . . . . . . . . . 11
︸ ︷︷ ︸

2i−1

,

a3 = 0 . . . . . . 0
︸ ︷︷ ︸

n−ni

0 . . . 0
︸ ︷︷ ︸

i−1

1 . . . 1
︸ ︷︷ ︸

i+1

0011 0 . . . 0
︸ ︷︷ ︸

i−2

11 0 . . . 0
︸ ︷︷ ︸

i−3

,

a4 = 0 . . . . . . 0
︸ ︷︷ ︸

n−ni

1 00 . . . 0
︸ ︷︷ ︸

i−2

111 00 . . . 0
︸ ︷︷ ︸

i−2

1100 1 . . . 1
︸ ︷︷ ︸

2i−4

0, for i = 3,
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a4 = 0 . . . . . . 0
︸ ︷︷ ︸

n−ni

1 00 . . . 0
︸ ︷︷ ︸

i−2

111 00 . . . 0
︸ ︷︷ ︸

i−2

1100 1 . . . 1
︸ ︷︷ ︸

2i−4

1, for i = 4,

a5 = 0 . . . . . . 0
︸ ︷︷ ︸

n−ni

00 . . . 0
︸ ︷︷ ︸

i−1

11100 11 . . . 1
︸ ︷︷ ︸

i−2

00 1 . . . 1
︸ ︷︷ ︸

2i−5

00,

a6 = 0 . . . . . . 0
︸ ︷︷ ︸

n−ni

00 1 . . . . . . 1
︸ ︷︷ ︸

i+2

00 . . . . . . 0
︸ ︷︷ ︸

2i−4

1 00 . . . 0
︸ ︷︷ ︸

i−1

1.

The induced subgraph on the set S in (FQni
)k is isomorphic to the graph in

Figure 3. This induced subgraph is isomorphic to G1 and the result follows by
Lemma 9. For n ≥ 1+ni, the induced subgraph on the set S1 = {a2, a3, a4, a5, a6}
in (FQn)

k is isomorphic to C5. The result follows by Proposition 2.

Lemma 16. Suppose i = 3 or 4, k = 2i + 1, ni = 4i + 3, and n ≥ ni. Then

(FQn)
k is not a divisor graph.

Proof. Consider the induced subgraph on the set S = {a1, a2, a3, a4, a5} in
(FQn)

k, where the ai′s are:

a1 = 0 . . . . . . 0
︸ ︷︷ ︸

n−ni

1 0 . . . 00
︸ ︷︷ ︸

i

1 0 . . . 00
︸ ︷︷ ︸

i

1 . . . 11
︸ ︷︷ ︸

i

0 . . . 0
︸ ︷︷ ︸

i−1

11,

a2 = 0 . . . . . . 0
︸ ︷︷ ︸

n−ni

10 1 . . . 1
︸ ︷︷ ︸

i

0 . . . . . . 0
︸ ︷︷ ︸

i

1 . . . . . . . . . 11
︸ ︷︷ ︸

2i−1

00,

a3 = 0 . . . . . . 0
︸ ︷︷ ︸

n−ni

0 . . . 0
︸ ︷︷ ︸

i−1

1 . . . 1
︸ ︷︷ ︸

i+1

0011 0 . . . 0
︸ ︷︷ ︸

i−2

11 0 . . . 0
︸ ︷︷ ︸

i−2

1,

a4 = 0 . . . . . . 0
︸ ︷︷ ︸

n−ni

00 1 . . . . . . 1
︸ ︷︷ ︸

i+2

0 . . . . . . 00
︸ ︷︷ ︸

2i−4

1 0 . . . 0
︸ ︷︷ ︸

i−1

111,

a5 = 0 . . . . . . 0
︸ ︷︷ ︸

n−ni

0 . . . 0
︸ ︷︷ ︸

i−1

11100 1 . . . 11
︸ ︷︷ ︸

i−2

00 1 . . . 11
︸ ︷︷ ︸

2i−5

0011.

For n ≥ ni, the induced subgraph on the set S in (FQn)
k is isomorphic to C5.

The result follows by Proposition 2.

Theorem 17. Suppose i ≥ 5, k = 2i, ni = 4i+ 1, and n ≥ ni. Then (FQn)
k is

not a divisor graph.

Proof. Consider the induced subgraph on the set S = {a1, a2, a3, a4, a5, a6} in
(FQn)

k, where the ai′s are:

a1 = 0 . . . 0
︸ ︷︷ ︸

n−ni

1 0 . . . . . . . . . 0
︸ ︷︷ ︸

i

1 0 . . . . . . . . . 00
︸ ︷︷ ︸

i

1 . . . . . . . . . 1
︸ ︷︷ ︸

i

00 . . . . . . . . . 00
︸ ︷︷ ︸

i−1

,

a2 = 0 . . . 0
︸ ︷︷ ︸

n−ni

1 1 . . . . . . . . . 1
︸ ︷︷ ︸

i

1 0 . . . . . . . . . 00
︸ ︷︷ ︸

i

1 . . . . . . . . . 1
︸ ︷︷ ︸

i

11 . . . . . . . . . 11
︸ ︷︷ ︸

i−1

,

a3 = 0 . . . 0
︸ ︷︷ ︸

n−ni

0 . . . 0
︸ ︷︷ ︸

⌊ i

2
⌋+1

1 . . . 1
︸ ︷︷ ︸

⌈ i

2
⌉

1 1 . . . 1
︸ ︷︷ ︸

⌊ i

2
⌋

0 . . . 0
︸ ︷︷ ︸

⌈ i

2
⌉

1 . . . 1
︸ ︷︷ ︸

⌈ i

2
⌉

0 . . . 0
︸ ︷︷ ︸

⌊ i

2
⌋

1 . . . 11
︸ ︷︷ ︸

⌈ i−1

2
⌉

00 . . . 00
︸ ︷︷ ︸

⌊ i−1

2
⌋−1

1,
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for i odd,

a3 = 0 . . . 0
︸ ︷︷ ︸

n−ni

0 0 . . . 0
︸ ︷︷ ︸

⌊ i

2
⌋

1 . . . 1
︸ ︷︷ ︸

⌈ i

2
⌉

1 1 . . . 1
︸ ︷︷ ︸

⌊ i

2
⌋

0 . . . 0
︸ ︷︷ ︸

⌈ i

2
⌉

1 . . . 1
︸ ︷︷ ︸

⌈ i

2
⌉

0 . . . 0
︸ ︷︷ ︸

⌊ i

2
⌋

1 . . . 1
︸ ︷︷ ︸

⌈ i−1

2
⌉

0 . . . 0
︸ ︷︷ ︸

⌊ i−1

2
⌋

,

for i even,

a4 = 0 . . . 0
︸ ︷︷ ︸

n−ni

1 0 . . . 0
︸ ︷︷ ︸

⌊ i

2
⌋

1 . . . 1
︸ ︷︷ ︸

⌈ i

2
⌉

1 0 . . . 0
︸ ︷︷ ︸

⌊ i

2
⌋

1 . . . 1
︸ ︷︷ ︸

⌈ i

2
⌉

0 . . . 0
︸ ︷︷ ︸

⌈ i

2
⌉

1 . . . 1
︸ ︷︷ ︸

⌊ i

2
⌋

1 . . . 1
︸ ︷︷ ︸

⌈ i−1

2
⌉

0 . . . 0
︸ ︷︷ ︸

⌊ i−1

2
⌋

,

for i odd,

a4 = 0 . . . 0
︸ ︷︷ ︸

n−ni

1 0 . . . 0
︸ ︷︷ ︸

⌊ i

2
⌋

1 . . . 1
︸ ︷︷ ︸

⌈ i

2
⌉

1 0 . . . 0
︸ ︷︷ ︸

⌊ i

2
⌋

1 . . . 1
︸ ︷︷ ︸

⌈ i

2
⌉

0 . . . 0
︸ ︷︷ ︸

⌈ i

2
⌉

1 . . . 1
︸ ︷︷ ︸

⌊ i

2
⌋

1 . . . 1
︸ ︷︷ ︸

⌈ i−1

2
⌉

0 . . . 00
︸ ︷︷ ︸

⌊ i−1

2
⌋−1

1,

for i even,

a5 = 0 . . . 0
︸ ︷︷ ︸

n−ni

0 0 . . . 0
︸ ︷︷ ︸

⌊ i

2
⌋

1 . . . 1
︸ ︷︷ ︸

⌈ i

2
⌉

1 0 . . . 0
︸ ︷︷ ︸

⌈ i

2
⌉

1 . . . 1
︸ ︷︷ ︸

⌊ i

2
⌋

0 . . . 0
︸ ︷︷ ︸

⌈ i

2
⌉

1 . . . 11
︸ ︷︷ ︸

⌊ i

2
⌋−1

1 . . . 1
︸ ︷︷ ︸

⌈ i−1

2
⌉

00 . . . 00
︸ ︷︷ ︸

⌊ i−1

2
⌋+1

,

a6 = 0 . . . 0
︸ ︷︷ ︸

n−ni

0 0 . . . 0
︸ ︷︷ ︸

⌊ i

2
⌋−1

1 . . . 1
︸ ︷︷ ︸

⌈ i

2
⌉+1

0 1 . . . 1
︸ ︷︷ ︸

⌈ i

2
⌉

0 . . . 0
︸ ︷︷ ︸

⌊ i

2
⌋

1 . . . 1
︸ ︷︷ ︸

(⌈ i

2
⌉)−2

0 . . . 0
︸ ︷︷ ︸

⌊ i

2
⌋

1 . . . 1
︸ ︷︷ ︸

⌈ i−1

2
⌉

0 . . . 00
︸ ︷︷ ︸

⌊ i−1

2
⌋+1

1.

The induced subgraph on the set S in (FQni
)k is isomorphic to the graph in

Figure 3. This induced subgraph is isomorphic to G1 and the result follows by
Lemma 9. For n ≥ 1+ni, the induced subgraph on the set S1 = {a2, a3, a4, a5, a6}
in (FQn)

k is isomorphic to C5. The result follows by Proposition 2.

Theorem 18. Suppose i ≥ 5, k = 2i+1, ni = 4i+3, and n ≥ ni. Then (FQn)
k

is not a divisor graph.

Proof. Consider the induced subgraph on the set S = {a1, a2, a3, a4, a5} in
(FQn)

k, where the ai′s are:

a1 = 0 . . . 0
︸ ︷︷ ︸

n−ni

1 0 . . . . . . . . . 00
︸ ︷︷ ︸

i

1 0 . . . . . . . . . 0
︸ ︷︷ ︸

i

1 . . . . . . . . . 1
︸ ︷︷ ︸

i

0 . . . . . . . . . 00
︸ ︷︷ ︸

i−1

11,

a2 = 0 . . . 0
︸ ︷︷ ︸

n−ni

10 1 . . . . . . . . . 1
︸ ︷︷ ︸

i−1

1 0 . . . . . . . . . 0
︸ ︷︷ ︸

i

1 . . . . . . . . . 1
︸ ︷︷ ︸

i

1 . . . . . . . . . 11
︸ ︷︷ ︸

i−1

00,

a3 = 0 . . . 0
︸ ︷︷ ︸

n−ni

0 0 . . . 0
︸ ︷︷ ︸

⌊ i

2
⌋

1 . . . 1
︸ ︷︷ ︸

⌈ i

2
⌉

1 1 . . . 1
︸ ︷︷ ︸

⌊ i

2
⌋

0 . . . 0
︸ ︷︷ ︸

⌈ i

2
⌉

1 . . . 1
︸ ︷︷ ︸

⌈ i

2
⌉

0 . . . 0
︸ ︷︷ ︸

⌊ i

2
⌋

1 . . . 1
︸ ︷︷ ︸

⌈ i−1

2
⌉

0 . . . 0
︸ ︷︷ ︸

⌊ i−1

2
⌋−1

101,

for i odd,

a3 = 0 . . . 0
︸ ︷︷ ︸

n−ni

0 0 . . . 0
︸ ︷︷ ︸

⌊ i

2
⌋

1 . . . 1
︸ ︷︷ ︸

⌈ i

2
⌉

1 1 . . . 1
︸ ︷︷ ︸

⌊ i

2
⌋

0 . . . 0
︸ ︷︷ ︸

⌈ i

2
⌉

1 . . . 1
︸ ︷︷ ︸

⌈ i

2
⌉

0 . . . 0
︸ ︷︷ ︸

⌊ i

2
⌋

1 . . . 1
︸ ︷︷ ︸

⌈ i−1

2
⌉

0 . . . 0
︸ ︷︷ ︸

⌊ i−1

2
⌋

01,
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for i even,

a4 = 0 . . . 0
︸ ︷︷ ︸

n−ni

0 . . . 0
︸ ︷︷ ︸

⌊ i

2
⌋

1 . . . 1
︸ ︷︷ ︸

⌈ i

2
⌉+1

0 1 . . . 1
︸ ︷︷ ︸

⌈ i

2
⌉

0 . . . 0
︸ ︷︷ ︸

⌊ i

2
⌋

1 . . . 1
︸ ︷︷ ︸

⌈ i

2
⌉−2

0 . . . 0
︸ ︷︷ ︸

⌊ i

2
⌋

1 . . . 1
︸ ︷︷ ︸

⌈ i−1

2
⌉

0 . . . 00
︸ ︷︷ ︸

⌊ i−1

2
⌋+1

111,

a5 = 0 . . . 0
︸ ︷︷ ︸

n−ni

0 0 . . . 0
︸ ︷︷ ︸

⌊ i

2
⌋

1 . . . 1
︸ ︷︷ ︸

⌈ i

2
⌉

1 0 . . . 0
︸ ︷︷ ︸

⌈ i

2
⌉

1 . . . 1
︸ ︷︷ ︸

⌊ i

2
⌋

0 . . . 0
︸ ︷︷ ︸

⌈ i

2
⌉

1 . . . 1
︸ ︷︷ ︸

⌊ i

2
⌋−1

1 . . . 1
︸ ︷︷ ︸

⌈ i−1

2
⌉

0 . . . 00
︸ ︷︷ ︸

⌊ i−1

2
⌋+1

11.

For n ≥ ni, the induced subgraph on the set S in F (Qn)
k is isomorphic to C5.

The result follows by Proposition 2.

Previous results characterize which powers of folded-hypercubes are divisor
graphs. We collect these results in the following theorem.

Theorem 19. (FQn)
k is not a divisor graph iff 2 ≤ k ≤ ⌈n2 ⌉ − 1, where n ≥ 5.
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