ON •-LINE SIGNED GRAPHS $L_{\bullet}(S)$

Deepa Sinha
South Asian University Akbar Bhawan, Chanakyapuri
New Delhi-110 021, India
e-mail: deepa_sinha2001@yahoo.com

AND

Ayushi Dhama
Centre for Mathematical Sciences
Banasthali University
Banasthali-304 022 Rajasthan, India
e-mail: ayushi.dhama2@gmail.com

Abstract

A signed graph (or sigraph for short) is an ordered pair $S=\left(S^{u}, \sigma\right)$, where S^{u} is a graph, $G=(V, E)$, called the underlying graph of S and σ : $E \rightarrow\{+,-\}$ is a function from the edge set E of S^{u} into the set $\{+,-\}$. For a sigraph S its \bullet-line sigraph, $L_{\bullet}(S)$ is the sigraph in which the edges of S are represented as vertices, two of these vertices are defined adjacent whenever the corresponding edges in S have a vertex in common, any such L-edge $e e^{\prime}$ has the sign given by the product of the signs of the edges incident with the vertex in $e \cap e^{\prime}$. In this paper we establish a structural characterization of --line sigraphs, extending a well known characterization of line graphs due to Harary. Further we study several standard properties of \bullet-line sigraphs, such as the balanced •-line sigraphs, sign-compatible •-line sigraphs and \mathcal{C}-sign-compatible \bullet-line sigraphs.

Keywords: sigraph, line graph, •-line sigraph, balance, sign-compatibility, \mathcal{C}-sign-compatibility.
2010 Mathematics Subject Classification: 05C22, 05C75.

References

[1] B.D. Acharya, Signed intersection graphs, J. Discrete Math. Sci. Cryptogr. 13 (2010) 553-569.
doi:10.1080/09720529.2010.10698314
[2] M. Acharya and D. Sinha, Characterizations of line sigraphs, Nat. Acad. Sci. Lett. 28 (2005) 31-34.
Extended abstract in: Electron. Notes Discrete Math. 15 (2003) 12.
[3] M. Behzad and G.T. Chartrand, Line coloring of signed graphs, Elem. Math. 24(3) (1969) 49-52.
[4] L.W. Beineke, Derived graphs and digraphs, in: Beiträge zur Graphentheorie, H. Sachs, H. Voss and H. Walter (Ed(s)), (Teubner, Leipzig, 1968) 17-33.
[5] L.W. Beineke, Characterizations of derived graphs, J. Combin. Theory (B) 9 (1970) 129-135. doi:10.1016/S0021-9800(70)80019-9
[6] M.K. Gill, Contribution to some topics in graph theory and its applications (Ph.D. Thesis, Indian Institute of Technology, Bombay, 1983).
[7] F. Harary, On the notion of balance of a signed graph, Michigan Math. J. 2 (1953) 143-146. doi:10.1307/mmj/1028989917
[8] F. Harary, Graph Theory (Addison-Wesley Publ. Comp., Reading, Massachusetts, 1969).
[9] F. Harary and R.Z. Norman, Some properties of line digraphs, Rend. Circ. Mat. Palermo (2) Suppl. 9 (1960) 161-168.
[10] R.L. Hemminger and L.W. Beineke, Line graphs and line digraphs, in: Selected Topics in Graph Theory, L.W. Beineke and R.J. Wilson (Ed(s)), (Academic Press Inc., 1978) 271-305.
[11] J. Krausz, Démonstration nouvelle d'une théorème de Whitney sur les réseaux, Mat. Fiz. Lapok 50 (1943) 75-89.
[12] V.V. Menon, On repeated interchange graphs, Amer. Math. Monthly 73 (1966) 986989. doi:10.2307/2314503
[13] O. Ore, Theory of Graphs (Amer. Math. Soc. Colloq. Publ. 38, Providence, 1962).
[14] G. Sabidussi, Graph derivatives, Math. Z. 76 (1961) 385-401. doi:10.1007/BF01210984
[15] E. Sampathkumar, Point-signed and line-signed graphs, Karnatak Univ. Graph Theory Res. Rep. No. 1 (1973) (also see Abstract No. 1 in: Graph Theory Newsletter 2(2) (1972), National Academy Science Letters 7 (1984) 91-93).
[16] D. Sinha, New frontiers in the theory of signed graph (Ph.D. Thesis, University of Delhi, Faculty of Technology, 2005).
[17] D. Sinha and A. Dhama, Sign-compatibility of some derived signed graphs, Indian J. Math. 55 (2013) 23-40.
[18] D. Sinha and A. Dhama, Canonical-sign-compatibility of some signed graphs, J. Combin. Inf. Syst. Sci. 38 (2013) 129-138.
[19] D.B. West, Introduction to Graph Theory (Prentice-Hall of India Pvt. Ltd., 1996).
[20] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932) 150-168.
doi:10.2307/2371086
[21] T. Zaslavsky, A mathematical bibliography of signed and gain graphs and allied areas, 7th Edition, Electron. J. Combin. (1998) \#DS8.
[22] T. Zaslavsky, Glossary of signed and gain graphs and allied areas, Second Edition, Electron. J. Combin. (1998) \#DS9.
[23] T. Zaslavsky, Signed analogs of bipartite graphs, Discrete Math. 179 (1998) 205216.
doi:10.1016/S0012-365X(96)00386-X
Received 25 September 2013
Revised 7 April 2014
Accepted 9 April 2014

