GRAPHS WITH 3-RAINBOW INDEX $n-1$ AND $n-2$

Xueliang Li ${ }^{1,2,(a)}$, Ingo Schiermeyer ${ }^{(b)}$, KANG YANG ${ }^{1,(a)}$ AND Yan $\mathrm{ZHAO}^{1,(a)}$
${ }^{(a)}$ Center for Combinatorics and LPMC-TJKLC
Nankai University
Tianjin 300071, China
(b) Institut für Diskrete Mathematik und Algebra
Technische Universität Bergakademie Freiberg 09596 Freiberg, Germany
e-mail: lxl@nankai.edu.cn
Ingo.Schiermeyer@tu-freiberg.de
yangkang@mail.nankai.edu.cn zhaoyan2010@mail.nankai.edu.cn

Abstract

Let $G=(V(G), E(G))$ be a nontrivial connected graph of order n with an edge-coloring $c: E(G) \rightarrow\{1,2, \ldots, q\}, q \in \mathbb{N}$, where adjacent edges may be colored the same. A tree T in G is a rainbow tree if no two edges of T receive the same color. For a vertex set $S \subseteq V(G)$, a tree connecting S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for each k-subset S of $V(G)$ is called the k-rainbow index of G, denoted by $r x_{k}(G)$, where k is an integer such that $2 \leq k \leq n$. Chartrand et al. got that the k-rainbow index of a tree is $n-1$ and the k-rainbow index of a unicyclic graph is $n-1$ or $n-2$. So there is an intriguing problem: Characterize graphs with the k-rainbow index $n-1$ and $n-2$. In this paper, we focus on $k=3$, and characterize the graphs whose 3 -rainbow index is $n-1$ and $n-2$, respectively.

Keywords: rainbow S-tree, k-rainbow index.
2010 Mathematics Subject Classification: 05C05, 05C15, 05C75.

References

[^0][1] J.A. Bondy and U.S.R. Murty, Graph Theory (GTM 244, Springer, 2008).
[2] G. Chartrand, G. Johns, K. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.
[3] G. Chartrand, F. Okamoto and P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55 (2010) 360-367. doi:10.1002/net. 20339
[4] L. Chen, X. Li, K. Yang and Y. Zhao, The 3-rainbow index of a graph, Discuss. Math. Graph Theory 35 (2015) 81-94. doi:10.7151/dmgt. 1780
[5] Y. Caro, A. Lev, Y. Roditty, Zs. Tuza and R. Yuster, On rainbow connection, Electron. J. Combin. 15 (2008) \#R57.
[6] G. Chartrand, S. Kappor, L. Lesniak and D. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2 (1984) 1-6.
[7] G. Chartrand, G. Johns, K. McKeon and P. Zhang, The rainbow connectivity of a graph, Networks 54 (2009) 75-81.
doi:10.1002/net. 20296
[8] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013) 1-38. doi:10.1007/s00373-012-1243-2
[9] X. Li and Y. Sun, Rainbow Connections of Graphs (Springer Briefs in Math., Springer, 2012).

[^0]: ${ }^{1}$ Supported by NSFC Nos. 11371205 and 11071130.
 ${ }^{2}$ Corresponding author.

