THE 3-RAINBOW INDEX OF A GRAPH

Lily Chen ${ }^{1}$, Xueliang Li ${ }^{1,2}$
Kang Yang ${ }^{1}$ and Yan Zhao ${ }^{1}$
Center for Combinatorics and LPMC-TJKLC
Nankai University
Tianjin 300071, China
e-mail: lily60612@126.com
lxl@nankai.edu.cn
yangkang@mail.nankai.edu.cn zhaoyan2010@mail.nankai.edu.cn

Abstract

Let G be a nontrivial connected graph with an edge-coloring $c: E(G) \rightarrow$ $\{1,2, \ldots, q\}, q \in \mathbb{N}$, where adjacent edges may be colored the same. A tree T in G is a rainbow tree if no two edges of T receive the same color. For a vertex subset $S \subseteq V(G)$, a tree that connects S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for each k-subset S of $V(G)$ is called the k-rainbow index of G, denoted by $r x_{k}(G)$. In this paper, we first determine the graphs of size m whose 3 -rainbow index equals $m, m-1, m-2$ or 2 . We also obtain the exact values of $r x_{3}(G)$ when G is a regular multipartite complete graph or a wheel. Finally, we give a sharp upper bound for $r x_{3}(G)$ when G is 2-connected and 2-edge connected. Graphs G for which $r x_{3}(G)$ attains this upper bound are determined.

Keywords: rainbow tree, S-tree, k-rainbow index.
2010 Mathematics Subject Classification: 05C05, 05C15, 05C75.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory (GTM 244, Springer, 2008).
[2] Y. Caro, A. Lev, Y. Roditty, Zs. Tuza and R. Yuster, On rainbow connection, Electron. J. Combin. 15(1) (2008) R57.

[^0][3] G. Chartrand, G. Johns, K. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.
[4] G. Chartrand, F. Okamoto and P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55 (2010) 360-367. doi:10.1002/net. 20339
[5] G. Chartrand, G. Johns, K. McKeon and P. Zhang, The rainbow connectivity of a graph, Networks 54(2) (2009) 75-81. doi:10.1002/net. 20296
[6] X. Li and Y. Sun, Rainbow Connections of Graphs (Springer Briefs in Math., Springer, 2012).
[7] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013) 1-38. doi:10.1007/s00373-012-1243-2

[^0]: ${ }^{1}$ Supported by NSFC No. 11371205 and 11071130.
 ${ }^{2}$ Corresponding author.

