COLOR ENERGY OF A UNITARY CAYLEY GRAPH

Chandrashekar Adiga, E. Sampathkumar
AND
M.A. SRIRAJ ${ }^{1}$
Department of Studies in Mathematics
University of Mysore
Manasagangotri
Mysore - 570 006, India
e-mail: c_adiga@hotmail.com esampathkumar@gmail.com srinivasa_sriraj@yahoo.co.in

Abstract

Let G be a vertex colored graph. The minimum number $\chi(G)$ of colors needed for coloring of a graph G is called the chromatic number. Recently, Adiga et al. [1] have introduced the concept of color energy of a graph $E_{c}(G)$ and computed the color energy of few families of graphs with $\chi(G)$ colors. In this paper we derive explicit formulas for the color energies of the unitary Cayley graph X_{n}, the complement of the colored unitary Cayley graph $\overline{\left(X_{n}\right)_{c}}$ and some gcd-graphs.

Keywords: coloring of a graph, unitary Cayley graph, gcd-graph, color eigenvalues, color energy.
2010 Mathematics Subject Classification: 05C15, 05C25, 05C50.

References

[1] C. Adiga, E. Sampathkumar, M.A. Sriraj and A.S. Shrikanth, Color energy of a graph, Proc. Jangjeon Math. Soc. 163 (2013) 335-351.
[2] N. Biggs, Algebraic Graph Theory, Second Edition (Cambridge Mathematical Library, Cambridge University Press, 1993).

[^0][3] C. Godsil and G. Royle, Algebraic Graph Theory (Graduate Texts in Mathematics, Springer, 207, 2001).
[4] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz 103 (1978) 1-22.
[5] G.H. Hardy and E. M. Wright, An Introdution to Theory of Numbers, Fifth Ed. (Oxford University Press New York, 1980).
[6] W. Klotz and T. Sander, Some properties of unitary Cayley graphs, Electron. J. Combin. 14 (2007) \#R45.
[7] A. Ilić, The energy of unitary Cayley graphs, Linear Algebra Appl. 431 (2009) 18811889. doi:10.1016/j.laa.2009.06.025
[8] M. Mollahajiaghaei, The eigenvalues and energy of integral circulant graphs, Trans. Combin. 1 (2012) 47-56.
[9] E. Sampathkumar and M.A. Sriraj, Vertex labeled/colored graphs, matrices and signed graphs, J. Combin. Inform. System Sci., to appear.
[10] W. So, Integral circulant graphs, Discrete Math. 306 (2006) 153-158. doi:10.1016/j.disc.2005.11.006

Received 31 January 2013
Revised 17 September 2013
Accepted 16 October 2013

[^0]: ${ }^{1}$ The first author is thankful to the university grants commission Goverment of India for the financial support under the grant F.510/2/SAP-DRS/2011. The second and third authors are thankful to DST for its financial support under the project SR/S4/MS 236/04.

