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DOWNHILL DOMINATION IN GRAPHS
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Abstract

A path π = (v1, v2, . . . , vk+1) in a graph G = (V,E) is a downhill path if
for every i, 1 ≤ i ≤ k, deg(vi) ≥ deg(vi+1), where deg(vi) denotes the degree
of vertex vi ∈ V. The downhill domination number equals the minimum
cardinality of a set S ⊆ V having the property that every vertex v ∈ V lies on
a downhill path originating from some vertex in S. We investigate downhill
domination numbers of graphs and give upper bounds. In particular, we
show that the downhill domination number of a graph is at most half its
order, and that the downhill domination number of a tree is at most one
third its order. We characterize the graphs obtaining each of these bounds.
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