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Abstract

Given a simple directed graph D = (V,A), let the size of the largest
induced acyclic tournament be denoted by mat(D). Let D ∈ D(n, p) (with
p = p(n)) be a random instance, obtained by randomly orienting each edge
of a random graph drawn from G(n, 2p). We show that mat(D) is asymp-
totically almost surely (a.a.s.) one of only 2 possible values, namely either
b∗ or b∗ + 1, where b∗ = ⌊2(log

r
n) + 0.5⌋ and r = p−1.

It is also shown that if, asymptotically, 2(log
r
n) + 1 is not within a

distance of w(n)/(lnn) (for any sufficiently slow w(n) → ∞) from an integer,
then mat(D) is ⌊2(log

r
n) + 1⌋ a.a.s. As a consequence, it is shown that

mat(D) is 1-point concentrated for all n belonging to a subset of positive
integers of density 1 if p is independent of n. It is also shown that there
are functions p = p(n) for which mat(D) is provably not concentrated in a
single value. We also establish thresholds (on p) for the existence of induced
acyclic tournaments of size i which are sharp for i = i(n) → ∞.

We also analyze a polynomial time heuristic and show that it produces
a solution whose size is at least log

r
n + Θ(

√

log
r
n). Our results are valid

as long as p ≥ 1/n. All of these results also carry over (with some slight
changes) to a related model which allows 2-cycles.
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1. Appendix

1.1. mat(D) versus ω(G)

The following lemma relates the probabilities in the two models D(n, p) and
G(n, p) for having, respectively, tournaments and cliques of specific sizes. Its
proof is similar to the proof of an analogous relationship involving mas(D) and
α(G) (maximum size of an independent set in G) established in [23].

Lemma 1.1. For any positive integer b, for a random digraph D ∈ D(n, p),
Pr[mat(D) ≥ b] ≥ Pr[ω(G) ≥ b],

where G ∈ G(n, p).

Proof. Given a linear ordering σ of vertices of D and a subset A of size b, we
say that D[A] is consistent with σ if for every σi, σj ∈ A with i < j, D[A] has
the arc (σi, σj).
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Let τ denote an arbitrary but fixed ordering of V . Once we fix τ , the spanning
subgraph of D formed by arcs of the form (τ(i), τ(j)) (i < j) is having the same
distribution as G(n, p). Hence, for any A, the event of D[A] being consistent with
τ is equivalent to the event of A inducing a clique in G(n, p). Hence,

Pr( mat(D) ≥ b) = Pr( ∃A, |A| = b, D[A] is an acyclic tournament)

= Pr( ∃A, |A| = b, ∃σ, D[A] is consistent with σ)

= Pr( ∃σ, ∃A, |A| = b, D[A] is consistent with σ)

≥ Pr( ∃A, |A| = b, D[A] is consistent with τ )

= Pr( ω(G) ≥ b).

Hence it is natural that we have a bigger upper bound for mat(D) than we have
for ω(G).

Note: Recall that we first draw an undirected G ∈ G(n, 2p) and then choose
uniformly randomly an orientation of E(G). Hence, for any fixed A ⊆ V of size
b with b = ω(1),

Pr( D[A] is an acyclic tournament | G[A] induces a clique ) =
b!

2(b
2
)

= o(1).

However, there are so many cliques of size b in G that one of them manages to
induce an acyclic tournament.

1.2. Proof of Theorem ??

We reduce the NP-complete Maximum Clique problem MC(G, k) to the MAT(D,
k) problem as follows. Given an instance (G = (V,E), k) of the first problem,
compute an instance f(G) = (G′ = (V,A), k) in polynomial time where

A = {(u, v) : uv ∈ E, u < v}.

Clearly, G′ is a dag and it is easy to see that a set V ′ ⊆ V induces a clique in
G if and only if V ′ induces an acyclic tournament in G′. This establishes that
MAT(D, k) is NP-hard even if D is restricted to be a dag.

The inapproximability of MAT(D) follows from the following observation.
Note that the reduction G → f(G) is an L-reduction in the sense of [20], since
|f(G)| = |G| and ω(G) = mat(G′). Hence, any inapproximability result on
maximum clique in undirected graphs (for example [12, 14]), implies a similar
inapproximability for the MAT(D) problem.



1.3. Proof of Claim ??

Order the vertices of U along a Hamilton path P (if any exists) of H. An arc
(u, v) ∈ A is a forward arc if u comes before v in P and is a backward arc
otherwise. Since H is acyclic, any arc (v, u) ∈ A must be a forward arc, since
otherwise the segment of P from u to v along with (v, u) forms a cycle in H.

Now if there is another Hamilton path Q in H, Q 6= P , then walking along
P , consider the first vertex a where Q differs from P . Then in the path Q, a is
visited immediately after some vertex a′ that comes after a in P . But this implies
that (a′, a) is a backward arc in H contradicting the observation earlier that H
has no backward arc.

1.4. Remaining cases of Theorem ??

For 1/wn ≤ p < 1/n,

E[X(n, 4)] =

(

n

4

)

· 4! · p(4
2
) ≤ n4p6 ≤ (1/n2) = o(1).

Now, an acyclic tournament of size 2 is simply an edge which a.a.s. exists since:

Pr[mat(D) < 2] = Pr[D is the empty graph] = (1 − 2p)(
n

2
) ≤ e−n(n−1)p = o(1),

since p ≥ 1/wn ≥ w/n2. Hence, when 1/wn ≤ p ≤ 1/n, mat(D) ∈ {2, 3}, a.a.s.
For wn−2 ≤ p < 1/wn,

E[X(n, 3)] =

(

n

3

)

· 3! · p(3
2
) ≤ n3p3 = o(1) since np = o(1).

The proof for mat(D) ≥ 2 is the same as in the previous case, since n2p =
ω(1), and hence, at least one arc will exist, a.a.s. So when w/n2 ≤ p ≤ 1/wn,
mat(D) = 2, a.a.s.

For (wn2)−1 ≤ p ≤ w/n2, E[X(n, 3)] = o(1), as in the previous case, and so
mat(D) = 1 or 2, a.a.s. When p < (wn2)−1, mat(D) = 1 since D a.a.s. has no
directed edge.
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