Discussiones Mathematicae Graph Theory 34 (2014) 497–507 doi:10.7151/dmgt.1745

Full PDF DMGT Page

TWO GRAPHS WITH A COMMON EDGE

LIDIA BADURA

Mathematics and Computer Science Department University of Opole Oleska 48 45-052 Opole, Poland e-mail: badura@math.uni.opole.pl

Abstract

Let $G = G_1 \cup G_2$ be the sum of two simple graphs G_1, G_2 having a common edge or $G = G_1 \cup e_1 \cup e_2 \cup G_2$ be the sum of two simple disjoint graphs G_1, G_2 connected by two edges e_1 and e_2 which form a cycle C_4 inside G. We give a method of computing the determinant det A(G) of the adjacency matrix of G by reducing the calculation of the determinant to certain subgraphs of G_1 and G_2 . To show the scope and effectiveness of our method we give some examples.

Keywords: graph, adjacency matrix, determinant of graph, path, cycle. 2010 Mathematics Subject Classification: 05C50.

References

- A. Abdollahi, Determinants of adjacency matrices of graphs, Trans. Combin. 1(4) (2012) 9–16.
- F. Harary, The Determinant of the adjacency matrix of a graph, SIAM Rev. 4 (1961) 202–210. doi:10.1137/1004057
- [3] L. Huang and W. Yan, On the determinant of the adjacency matrix of a type of plane bipartite graphs, MATCH Commun. Math. Comput. Chem. 68 (2012) 931–938.
 - [4] H.M. Rara, Reduction procedures for calculating the determinant of the adjacency matrix of some graphs and the singularity of square planar grids, Discrete Math. 151 (1996) 213-219.

 ${\rm doi:} 10.1016/0012\text{--}365X(94)00098\text{--}4$

[5] P. Wojtylak and S. Arworn, Paths of cycles and cycles of cycles, (2010) preprint.

Received 30 October 2012 Revised 8 May 2013 Accepted 8 May 2013