ON EULERIAN IRREGULARITY IN GRAPHS

Eric Andrews, Chira Lumduanhom
AND

Ping Zhang
Department of Mathematics
Western Michigan University
Kalamazoo, MI 49008, USA
e-mail: ping.zhang@wmich.edu

Abstract

A closed walk in a connected graph G that contains every edge of G exactly once is an Eulerian circuit. A graph is Eulerian if it contains an Eulerian circuit. It is well known that a connected graph G is Eulerian if and only if every vertex of G is even. An Eulerian walk in a connected graph G is a closed walk that contains every edge of G at least once, while an irregular Eulerian walk in G is an Eulerian walk that encounters no two edges of G the same number of times. The minimum length of an irregular Eulerian walk in G is called the Eulerian irregularity of G and is denoted by $E I(G)$. It is known that if G is a nontrivial connected graph of size m, then $\binom{m+1}{2} \leq E I(G) \leq 2\binom{m+1}{2}$. A necessary and sufficient condition has been established for all pairs k, m of positive integers for which there is a nontrivial connected graph G of size m with $E I(G)=k$. A subgraph F in a graph G is an even subgraph of G if every vertex of F is even. We present a formula for the Eulerian irregularity of a graph in terms of the size of certain even subgraph of the graph. Furthermore, Eulerian irregularities are determined for all graphs of cycle rank 2 and all complete bipartite graphs.

Keywords: Eulerian walks, Eulerian irregularity.
2010 Mathematics Subject Classification: 05C38, 05C45.

References

[1] E. Andrews, G. Chartrand, C. Lumduanhom and P. Zhang, On Eulerian walks in graphs, Bull. Inst. Combin. Appl. 68 (2013) 12-26.
[2] G. Chartrand, L. Lesniak and P. Zhang, Graphs \& Digraphs: 5th Edition (Chapman \& Hall/CRC, Boca Raton, FL, 2010).
[3] L. Euler, Solutio problematis ad geometriam situs pertinentis, Comment. Academiae Sci. I. Petropolitanae 8 (1736) 128-140.
[4] M.K. Kwan, Graphic programming using odd or even points, Acta Math. Sinica 10 (1960) 264-266 (in Chinese), translated as Chinese Math. 1 (1960) 273-277.

Received 10 December 2012
Accepted 9 May 2013

