ON DEGREE SETS AND THE MINIMUM ORDERS IN BIPARTITE GRAPHS

Y. Manoussakis
Université Paris XI (Orsay)
L.R.I., Bât. 490, F-91405
Orsay Cédex, France
e-mail: yannis@lri.fr
AND
H.P. Patil ${ }^{1}$
Department of Mathematics
Pondicherry University
Puducherry, India
e-mail: hpppondy@gmail.com

Abstract

For any simple graph G, let $D(G)$ denote the degree set $\left\{\operatorname{deg}_{G}(v): v \in\right.$ $V(G)\}$. Let S be a finite, nonempty set of positive integers. In this paper, we first determine the families of graphs G which are unicyclic, bipartite satisfying $D(G)=S$, and further obtain the graphs of minimum orders in such families. More general, for a given pair (S, T) of finite, nonempty sets of positive integers of the same cardinality, it is shown that there exists a bipartite graph $B(X, Y)$ such that $D(X)=S, D(Y)=T$ and the minimum orders of different types are obtained for such graphs.

Keywords: degree sets, unicyclic graphs.
2010 Mathematics Subject Classification: 05C07.

References

[1] F. Harary, Graph Theory (Addison-Wesley, Reading Mass, 1969).
[2] S.F. Kapoor, A.D. Polimeni and C.W. Wall, Degree sets for graphs, Fund. Math. XCV (1977) 189-194.

[^0][3] Y. Manoussakis, H.P. Patil and V. Sankar, Further results on degree sets for graphs, AKCE Int. J. Graphs Comb. 1 (2004) 77-82.
[4] Y. Manoussakis and H.P. Patil, Bipartite graphs and their degree sets, R.C. Bose Centenary Symposium on Discrete Mathematics and Applications, (Kolkata India, 15-21 Dec. 2002), Electron. Notes Discrete Math. 15 (2003) 125. doi:10.1016/S1571-0653(04)00554-2
[5] S. Pirzada, T.A. Naikoo, and F.A. Dar, Degree sets in bipartite and 3-partite graphs, Orient. J. Math Sciences 1 (2007) 39-45.
[6] A. Tripathi and S. Vijay, On the least size of a graph with a given degree set, Discrete Appl. Math. 154 (2006) 2530-2536. doi:10.1016/j.dam.2006.04.003

[^0]: ${ }^{1}$ Research supported by Government of France.

