STAR-CYCLE FACTORS OF GRAPHS

YOSHIMI EGAWA

Tokyo University of Science, Shinjuku-Ku, Tokyo, Japan

MIKIO KANO1

Ibaraki University, Hitachi, Ibaraki, Japan

\textit{e-mail:} kano@max.ibaraki.ac.jp

AND

ZHENG YAN

Ibaraki University, Hitachi, Ibaraki, Japan

\textit{e-mail:} yanzhenghubei@163.com

Abstract

A spanning subgraph F of a graph G is called a \textit{star-cycle factor} of G if each component of F is a star or cycle. Let G be a graph and $f : V(G) \rightarrow \{1, 2, 3, \ldots \}$ be a function. Let $W = \{v \in V(G) : f(v) = 1\}$. Under this notation, it was proved by Berge and Las Vergnas that G has a star-cycle factor F with the property that (i) if a component D of F is a star with center v, then $\deg_F(v) \leq f(v)$, and (ii) if a component D of F is a cycle, then $V(D) \subseteq W$ if and only if $\text{iso}(G - S) \leq \sum_{x \in S} f(x)$ for all $S \subseteq V(G)$, where $\text{iso}(G - S)$ denotes the number of isolated vertices of $G - S$. They proved this result by using circulation theory of flows and fractional factors of graphs. In this paper, we give an elementary and short proof of this theorem.

\textbf{Keywords:} star factor, cycle factor, star-cycle factor, factor of graph.

\textbf{2010 Mathematics Subject Classification:} 05C70.

References

1The author was supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (C).

doi:10.1016/0012-365X(82)90048-6

doi:10.1016/1385-7258(78)90034-3

doi:10.1016/0012-365X(78)90006-7

Received 28 August 2012
Revised 13 December 2012
Accepted 28 December 2012