A Survey of Hereditary Properties of Graphs
References
K. Appel and W. Haken, Every planar graph is four colourable, Illinois
Jour. Math. 21(1977) 429--567.
G. Benadé, I. Broere, B. Jonck and M. Frick,
Uniquely (m,k)
-colourable graphs and
k-
-saturated graphs, Discrete Math.162 (1996) 13--22, doi: 10.1016/0012-365X(95)00301-C.
G. Birkhoff, Lattice theory (AMS, New York, 1948).
B. Bollobás and B. Manvel, Optimal vertex partitions, Bull. London
Math. Soc. 11(1979) 113--116, doi: 10.1112/blms/11.2.113.
B. Bollobás and N. Sauer, Uniquely colourable graphs with large girth,
Canad. J. Math. 28 (1976) no. 2 1340--1344; MR55\#2632.
B. Bollobás and A.G. Thomason, Uniquely partitionable graphs, J. London
Math. Soc. (2) 16 (1977) 403--410.
B. Bollobás and A.G. Thomason, Hereditary and monotone properties of
graphs, in: R.L. Graham and J. Nesetril, eds.,
The mathematics of Paul Erdős, II, Algorithms and Combinatorics 14
(Springer-Verlag, 1997) 70--78.
J. A. Bondy and U. S. Murty, Graph theory with applications (American Elsevier
Publishing Co., Inc., New York, 1976); MR54\#117.
O. V. Borodin, On decomposition of graphs into degenerate subgraphs,
Diskret. Analiz. 28(1976) 3--11.
O. V. Borodin, On acyclic colouring of planar graphs, Discrete Math.
25(1979) 211--236, doi: 10.1016/0012-365X(79)90077-3.
M. Borowiecki, I. Broere and P. Mihók, Minimal reducible bounds for
planar graphs (manuscript) 1997.
M. Borowiecki, I. Broere and P. Mihók, On generalized list colourings
of graphs (manuscript) 1997.
M. Borowiecki, E. Drgas-Burchardt and P. Mihók, Generalized list
colouring of graphs, Discuss. Mathematicae Graph Theory 15(1995)
185--193, doi: 10.7151/dmgt.1016.
M. Borowiecki, M. Hałuszczak and M. Skowronska, Minimal reducible
bounds for 1-non-outerplanar graphs, Report IM-1-96,
Inst. Math., Technical Univ. of Zielona Góra, Zielona Góra, 1996.
M. Borowiecki, J. Ivanco, P. Mihók and G. Semanišin,
Sequences realizable by maximal k-degenerate graphs, J. Graph Theory
19(1995) 117--124; MR96e:05078.
M. Borowiecki and D. Michalak, Generalized independence and domination in
graphs, Report IM-96, Inst. Math., Technical Univ. of Zielona Góra,
Zielona Góra, 1996.
M. Borowiecki and P. Mihók, Hereditary properties of
graphs, in: V. R. Kulli, ed., Advances in Graph Theory (Vishwa International
Publication, Gulbarga, 1991) 42--69.
P. Borowiecki and J. Ivanco, P-bipartitions of minor
hereditary properties Discussiones Mathematicae Graph Theory 17 (1997) 89-93.
I. Broere and M. Frick, On the order of uniquely (k,m)-colourable
graphs, Discrete mathematics 82 (1990) 225--232, doi: 10.1016/0012-365X(90)90200-2.
I. Broere, M. Frick and P. Mihók, On the order of uniquely
partitionable graphs Discussiones Mathematicae Graph Theory 17 (1997) 115-125.
I. Broere, M. Frick and G. Semanišin, Maximal graphs
with respect to hereditary properties Discussiones Mathematicae Graph Theory 17 (1997) 51-66.
(manuscript).
R. L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil.
Soc. 37(1941) 194--197, doi: 10.1017/S030500410002168X.
J.I. Brown, The complexity of generalized graph coloring, Discrete Appl.
Math. 69(1996) 257--270, doi: 10.1016/0166-218X(96)00096-0.
J. Bucko, P. Mihók and M. Voigt, Uniquely partitionable planar graphs
(submitted) 1996.
S.A. Burr and M.S. Jacobson, On inequalities involving vertex partition
parameter of graphs, Congr. Numerantium 70(1990) 159--170.
G. Chartrand, D. Geller and S. Hedetniemi, Graphs with forbidden
subgraphs, Journal of Combinatorial Theory (B) 10(1971)
12--41; MR44\#2645.
G. Chartrand and J. P. Geller, Uniquely colourable planar graphs, J.
Comb. Theory 6(1969) 271--278; MR39\#2661.
G. Chartrand, H.V. Kronk and C.E. Wall, The point-arboricity of a graph,
Israel J. Math. 6(1968) 169--175, doi: 10.1007/BF02760181.
G. Chartrand and L. Lesniak, Graphs and digraphs (Wadsworth & Brooks/Cole,
Monterey California, 1986).
E. J. Cockayne, S. T. Hedetniemi and R. Laskar, Gallai theorems for
graphs, hypergraphs and set systems, Discrete Math. 72(1988) 35--47, doi: 10.1016/0012-365X(88)90192-6.
L. J. Cowen, R. H. Cowen and D. R. Woodall, Defective colorings of graphs
in surfaces; partitions into subgraphs of bounded valency,
Journal of Graph Theory 10(1986) 187--195, doi: 10.1002/jgt.3190100207.
L. J. Cowen, W. Goddard and C.E. Jesurum, Defective coloring revisited
(to appear).
K. Edwards, The complexity of some graph colouring problems, Discrete
Appl. Math. 36(1992) 131--140, doi: 10.1016/0166-218X(92)90227-2.
P. Erdős, Some recent results on extremal problems in graph theory,
in: P. Rosentstiehl, ed., Theory of graphs vol. 38 (Gordon and Breach New
York, Dunod Paris, 1967) 117--123; MR37\#2634.
P. Erdős, On some new inequalities concerning extremal properties of
graphs, in: P. Erdős and G.Katona, eds., Theory of graphs vol. 38
(Academic Press, New York, 1968) 77--81; MR38\#1026.
P. Erdős, A. L. Rubin and H. Taylor, Choosability in graphs Proc.
West Coast Conf. on Combin., Graph Theory and Computing (Congressus
Numerantium XXVI, 1979) 125--157.
Z. Filáková, P. Mihók and G. Semanišin, On maximal
k-degenerate graphs (to appear in Mathematica Slovaca in 1997).
M. Frick, A survey of (m,k)-colourings, in: J. Gimbel c.a, ed., Quo
Vadis, Graph Theory? Annals of Discrete Mathematics vol. 55 (North-Holland,
Amsterdam, 1993) 45--58.
M. Frick and M. A. Henning, Extremal results on defective
colorings of graphs, Discrete mathematics 126(1994) 151--158, doi: 10.1016/0012-365X(94)90260-7.
T. Gallai, Uber extreme Punkt- und Kantenmengen, Ann. Univ. Sci.
Budapest, Eotvos Sect. Math. 2(1959) 133 -- 138 (German);
MR24\#A1222.
T. Gallai, Kritische Graphen I, Publ. Math. Inst. Hung. Acad. Sci.
8 (1963) 165 -- 192 (German); MR32\#5540.
M. Garey, D. Johnson and R.E. Tarjan, The planar hamiltonian circuit
problem is NP-complete, SIAM J. Computing 5(1976) 704--714, doi: 10.1137/0205049.
M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the
theory of NP-completeness (W.H. Freeman, San Francisco, CA, 1979).
M.R. Garey, D.S. Johnson and L. Stockmeyer, Some simplified NP-complete
graph problems, Theoretical Comput. Sci. 1(1976) 237--267, doi: 10.1016/0304-3975(76)90059-1.
W. Goddard, Acyclic colorings of planar graphs, Discrete Math. 91
(1991) 91--94, doi: 10.1016/0012-365X(91)90166-Y.
R.L. Graham, B.L. Rothschild and J.H. Spencer, Ramsey theory (A
Wiley-Interscience Publication, New York, 1980).
G. Gratzer, Universal algebra (D. van Nostrand and Co., 1968).
D. L. Greenwell, R. L. Hemminger and J. Klerlein, Forbidden subgraphs
Pro. 4th S-E Conf. Combinatorics, Graph Theory and Computing (Utilitas Math.,
Winnipeg, Man., 1973) 389--394; MR50\#6924.
B. Grunbaum, Acyclic colorings of planar graphs, Israel J. Math. 14(1973)
390--408, doi: 10.1007/BF02764716.
S. Gutner, The complexity of planar graph choosability, Discrete Math.
159(1996) 119--130, doi: 10.1016/0012-365X(95)00104-5.
S.L. Hakimi, E. Schmeichel and J. Weinstein, Partitioning planar graphs
into independent sets and forest, Congressus Numerantium 78(1990)
109--118.
F. Harary, S. T. Hedetniemi and R. W. Robinson, Uniquely colourable
graphs, J. Comb. Theory 6(1969) 264--270; MR39\#99.
S. T. Hedetniemi, Hereditary properties of graphs, J. Combin. Theory (B)
14(1973) 94--99; MR47\#4861.
S. T. Hedetniemi and R. Laskar, Connected domination in graphs, in:
B. Bollobás, ed., Graph theory and combinatorics (Academic Press, London,
1984) 209--218.
P. Hell and J. Nesetril, On the complexity of H-coloring, J.
Comb. Theory (B) 48(1990) 92--110, doi: 10.1016/0095-8956(90)90132-J.
M. A. Henning and H. C. Swart, Bounds on a generalized domination
parameter, Quaestiones Math. 13(1990) 237--253, doi: 10.1080/16073606.1990.9631615.
T. R. Jensen and B. Toft, Graph colouring problems
(Wiley--Interscience Publications, New York, 1995).
L. Kászonyi and Zs. Tuza, Saturated graphs with minimal
number of edges, Journal of Graph Theory 10 (1986) 203-210, doi: 10.1002/jgt.3190100209.
S. Klavžar and M. Petkovsek, On characterizations with forbidden
subgraphs, Colloquia Mathematica Societatis János Bolyai, 52.
Combinatorics, Eger 2(1987) 331--339.
A. V. Kostochka, M. Stiebitz and B. Wirth, The colour theorems of Brooks
and Gallai extended, Discrete Math. 162(1996) 299--303, doi: 10.1016/0012-365X(95)00294-7.
J. Kratochvil and P. Mihók, Hom-properties are uniquely
factorizable into irreducible factors (submitted).
J. Kratochvil, P. Mihók and G. Semanišin, Graphs maximal
with respect to hom-properties (submitted).
J. Kratochvil and Zs. Tuza, Algorithmic complexity of list
colorings, Discrete Appl. Math. 50 (1994) 297--302, doi: 10.1016/0166-218X(94)90150-3.
R. Lick and A. T. White, k-degenerate graphs, Canadian Journal
of Mathematics 22(1970) 1082--1096; MR42\#1715.
L. Lovász, On decomposition of graphs, Studia Sci. Math. Hungar
1 (1966) 237--238; MR34\#2442.
P. Mihók, The minimal reducible bounds for degenerate classes of graphs
(manuscript).
P. Mihók, On graphs critical with respect to vertex partition
numbers, Discrete Math. 37(1981) 123--126, doi: 10.1016/0012-365X(81)90146-1.
P.Mihók, On vertex partition numbers of graphs, in: M. Fiedler, ed.,
Graphs and Other Combinatorial Topics, Proc. of the Third Czechoslovak Symp.
on Graph Theory (Praha 1982) (Teubner-Texte, Leipzig, 1983) 15--18.
P. Mihók, Additive hereditary properties and
uniquely partitionable graphs, in: M. Borowiecki and
Z. Skupień, eds., Graphs, hypergraphs and matroids (Zielona Góra, 1985)
49--58.
P. Mihók, On graphs critical with respect to generalized independence
numbers, Colloquia Mathematica Societatis János Bolyai 52.
Combinatorics, Eger 2(1987) 417--421.
P. Mihók, On the minimal reducible bound for outerplanar and
planar graphs, Discrete Math. 150(1996) 431--435, doi: 10.1016/0012-365X(95)00211-E.
P. Mihók and G. Semanišin, On the chromatic number of reducible
hereditary properties (submitted).
P. Mihók and G. Semanišin, Reducible properties of graphs,
Discussiones Mathematicae - Graph Theory 15(1995) 11--18; MR96c:05149.
P. Mihók and R. Vasky, On the factorization of reducible
properties of graphs into irreducible factors, Discussiones
Mathematicae - Graph Theory 15(1995) 195--203; MR96i:05134.
J. Mitchem, Maximal k-degenerate graphs, Utilitas Math. 11(1977) 101--106.
J. Mycielski, Sur le coloriage des graphes, Colloq. Math. 3(1955) 161--162.
J. Nesetril, Graph homomorphism and their structure, in: Y. Alavi
and A. Schwenk, eds., Graph Theory, Combinatorics and Applications:
Proceedings of the Seventh Quadrennial International Conference
on the Theory and Applications of Graphs vol. 2 (, 1995) 825--832.
J. Nesetril and V. Rodl, Partitions of vertices, Comment.
Math. Univ. Carolinae 17(1976) no. 1 85--95; MR54\#173.
J. Nieminen, Two bounds for the domination number of a graph, J. Inst.
Math. Appl. 14(1974) 183--187; MR50\#9708.
L. T. Ollmann, K2,2-saturated graphs with minimal number of edges
Proc. 3rd S-E Conference on Combinatorics, Graph Theory and Computing (Boca
Raton, Fla., 1972) (Florida Atlantic Univ., Boca Raton, Fla., 1972) 367--392;
MR50#1970.
O. Ore, Theory of graphs(Amer. Math. Soc. Colloq. Publ., vol. XXXVIII,
AMS Providence, 1962); MR27\#740.
K. S. Poh, On the linear vertex-arboricity of a planar graph, Journal of
Graph Theory 14(1990) 73--75, doi: 10.1002/jgt.3190140108.
E. R. Scheinerman, On the structure of hereditary classes of
graphs, Journal of Graph Theory 10(1986) 545--551, doi: 10.1002/jgt.3190100414.
G. Semanišin, On some variations of extremal graph problems
Discussiones Mathematicae Graph Theory 17 (1997) 67-76.
J. M. S. Simoes-Pereira, Joins of n-degenerate graphs and uniquely
(m,n)- partitionable graphs, J. Combin. Theory 21(1976) 21--29, doi: 10.1016/0095-8956(76)90023-X.
M. Simonovits, A method for solving extremal problems in graph theory,
in: P. Erdős and G. Katona, eds., Theory of graphs (Academic Press, New
York, 1968) 279--319; MR38\#2056.
M. Simonovits, Extremal graph problems with symmetrical extremal graphs.
additional chromatical conditions, Discrete Mathematics 7(1974)
349--376; MR49\#2459.
M. Simonovits, Extremal graph theory, in: L. W. Beineke and R. J. Wilson,
eds., Selected topics in graph theory vol. 2 (Academic Press, London, 1983)
161--200.
M. Simonovits, Paul Erdős influence on extremal graph theory,
in: R.L. Graham and J. Nesetril, eds.,
The mathematics of Paul Erdős, II, Algorithms and Combinatorics 14
(Springer-Verlag, 1997) 148--192.
S.K. Stein, B-sets and planar graphs, Pacific J. Math. 37(1971)
217--224; MR46\#5180.
L. Stockmeyer, Planar 3-colorability is polynomial complete, SIGACT News
(ACM Publication) 5(1973) 19--25, doi: 10.1145/1008293.1008294.
C. Thomassen, Color-critical graphs on fixed surface, Report, Technical
University of Denmark, Lyngby, 1995.
C. Thomassen, Decomposing a planar into degenerate graphs, J. Combin.
Theory (B) 65(1995) 305--314, doi: 10.1006/jctb.1995.1057.
B. Toft, A survey of Hadwiger's conjecture, Preprints, Institut for
Matematik og Datalogi, Odense Universitet, January 1996.
P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok
48(1941) 436--452 (Hungarian); MR8,284j.
P. Turán, On the theory of graph, Colloquia Math. 3(1954)
19--30; MR15,476b.
Zs. Tuza, C4-saturated graphs of minimum size, Acta Univ.Carolin.-
Math. Phys. 30(1989) 161--167.
Zs. Tuza, Graph colorings with local constraints - a survey,
Discussiones Mathematicae Graph Theory 17 (1997) (to appear).
V. G. Vizing, On an estimate of the chromatic class of a p-graph,
Diskret. Analiz 3(1964) 25--30 (Russian); MR34\#101.
V. G. Vizing, Colouring the vertices of a graph in prescribed colours,
Diskret. Analiz 29(1976) 3--10 (Russian).
M.L. Weaver and D.B. West Relaxed chromatic number of graphs, Graphs and Combinatorics
10(1994) 75--93, doi: 10.1007/BF01202473.
E. Welzl, Color families are dense, Theoretical Computer Sci. 17(1982) 29--41, doi: 10.1016/0304-3975(82)90129-3.
D. Woodall, Improper colorings of graphs, in: R. Nelson and R.J. Wilson,
eds., Graph Colorings (Longman, New York, 1990) 45--64.
X. Zhu, Uniquely H-colorable graphs with large girth, Journal of Graph
Theory 23(1996) 33--41, doi: 10.1002/(SICI)1097-0118(199609)23:1<33::AID-JGT3>3.0.CO;2-L.
A.A. Zykov, On some problems of linear complexes, Mat. Sbornik N. S.
24(1949) 163--188.
Received 2 January 1997